Word Ladder
Problem Statement
A transformation sequence from word beginWord
to word endWord
using a dictionary wordList
is a sequence of words beginWord -> s1 -> s2 -> ... -> sk
such that:
- Every adjacent pair of words differs by a single letter.
- Every
si
for1 <= i <= k
is inwordList
. Note thatbeginWord
does not need to be inwordList
. sk == endWord
Given two words, beginWord
and endWord
, and a dictionary wordList
, return the number of words in the shortest transformation sequence from beginWord
to endWord
, or 0
if no such sequence exists.
Example 1
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.
Example 2
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
Try here before watching the video.
Video Explanation
Java Code
import java.util.*;
class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
Set<String> set = new HashSet<>(wordList);
Queue<String> queue = new LinkedList<>();
queue.offer(beginWord);
int wordCount = 1;
while(!queue.isEmpty()) {
int queueSize = queue.size();
for(int i = 0; i < queueSize; i++) {
String currWord = queue.poll();
if(currWord.equals(endWord)) return wordCount;
char word[] = currWord.toCharArray();
for(int j = 0; j < word.length; j++) {
char ch = word[j];
for(char c = 'a'; c <= 'z'; c++) {
word[j] = c;
String nextWord = new String(word);
if(set.contains(nextWord)) {
queue.add(nextWord);
set.remove(nextWord);
}
}
word[j] = ch;
}
}
wordCount += 1;
}
return 0;
}
}
C++ Code
#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> wordSet(wordList.begin(), wordList.end());
queue<string> q;
q.push(beginWord);
int wordCount = 1;
while (!q.empty()) {
int qSize = q.size();
for (int i = 0; i < qSize; ++i) {
string currWord = q.front();
q.pop();
if (currWord == endWord) {
return wordCount;
}
for (int j = 0; j < currWord.size(); ++j) {
char originalChar = currWord[j];
for (char c = 'a'; c <= 'z'; ++c) {
currWord[j] = c;
if (wordSet.find(currWord) != wordSet.end()) {
q.push(currWord);
wordSet.erase(currWord);
}
}
currWord[j] = originalChar;
}
}
wordCount += 1;
}
return 0;
}
};
Python Code
from typing import List
from collections import deque
class Solution:
def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
word_set = set(wordList)
queue = deque([beginWord])
word_count = 1
while queue:
queue_size = len(queue)
for i in range(queue_size):
curr_word = queue.popleft()
if curr_word == endWord:
return word_count
word_list = list(curr_word)
for j in range(len(word_list)):
original_char = word_list[j]
for c in 'abcdefghijklmnopqrstuvwxyz':
word_list[j] = c
next_word = ''.join(word_list)
if next_word in word_set:
queue.append(next_word)
word_set.remove(next_word)
word_list[j] = original_char
word_count += 1
return 0
Javascript Code
Go Code
func ladderLength(beginWord string, endWord string, wordList []string) int {
set := make(map[string]bool)
for _, word := range wordList {
set[word] = true
}
queue := []string{beginWord}
wordCount := 1
for len(queue) > 0 {
queueSize := len(queue)
for i := 0; i < queueSize; i++ {
currWord := queue[0]
queue = queue[1:]
if currWord == endWord {
return wordCount
}
word := []rune(currWord)
for j := 0; j < len(word); j++ {
ch := word[j]
for c := 'a'; c <= 'z'; c++ {
word[j] = c
nextWord := string(word)
if set[nextWord] {
queue = append(queue, nextWord)
delete(set, nextWord)
}
}
word[j] = ch
}
}
wordCount++
}
return 0
}
Complexity Analysis
- Time Complexity: O(M2×N), where M is the length of words and N is the total number of words in the input word list.
- Space Complexity: O(M2×N), to store all M transformations for each of the N words.