Problem Statement
Given an array of integers nums and an integer k, return the number of contiguous subarrays where the product of all the elements in the subarray is strictly less than k.
Example 1
Input: nums = [10,5,2,6], k = 100
Output: 8
Explanation: The 8 subarrays that have product less than 100 are:
[10], [5], [2], [6], [10, 5], [5, 2], [2, 6], [5, 2, 6]
Note that [10, 5, 2] is not included as the product of 100 is not strictly less than k.
Example 2
Input: nums = [1,2,3], k = 0
Output: 0
Try here before watching the video.
Similar Problem
Video Solution
Java Code
class Solution {
public int numSubarrayProductLessThanK(int[] nums, int k) {
if(k <= 1) return 0;
int start = 0, subarrayCount = 0;
int product = 1;
for(int end = 0; end < nums.length; end++) {
product *= nums[end];
while(product >= k) {
product /= nums[start];
start += 1;
}
subarrayCount += (end - start + 1);
}
return subarrayCount;
}
}
C++ Code
class Solution {
public:
int numSubarrayProductLessThanK(vector<int>& nums, int k) {
if(k <= 1) return 0;
int start = 0, subarrayCount = 0;
int product = 1;
for(int end = 0; end < nums.size(); end++) {
product *= nums[end];
while(product >= k) {
product /= nums[start];
start += 1;
}
subarrayCount += (end - start + 1);
}
return subarrayCount;
}
};
Python Code
class Solution:
def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
if k <= 1:
return 0
start = 0
subarray_count = 0
product = 1
for end in range(len(nums)):
product *= nums[end]
while product >= k:
product /= nums[start]
start += 1
subarray_count += (end - start + 1)
return subarray_count
Javascript Code
var numSubarrayProductLessThanK = function(nums, k) {
if (k <= 1) return 0;
let start = 0;
let subarrayCount = 0;
let product = 1;
for (let end = 0; end < nums.length; end++) {
product *= nums[end];
while (product >= k) {
product /= nums[start];
start += 1;
}
subarrayCount += (end - start + 1);
}
return subarrayCount;
};
Go Code
func numSubarrayProductLessThanK(nums []int, k int) int {
if k <= 1 {
return 0
}
start := 0
subarrayCount := 0
product := 1
for end := 0; end < len(nums); end++ {
product *= nums[end]
for product >= k {
product /= nums[start]
start += 1
}
subarrayCount += (end - start + 1)
}
return subarrayCount
}
Complexity Analysis
Time Complexity: O(N)
Space Complexity: O(1)