Diameter of Binary Tree - LeetCode Daily Challenge
Problem Statement
Given the root
of a binary tree, return the length of the diameter of the tree.
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root
.
The length of a path between two nodes is represented by the number of edges between them.
Example 1
Input: root = [1,2,3,4,5,6,7]
Output: 4
Explanation: 4 is the length of the path [4,2,1,3,6], [4,2,1,3,7], [5,2,1,3,6] or [5,2,1,3,7].
Example 2
Input: root = [1,2,3,null,4,null,null,5,6,7,8,9,10,11,12,null,null,null,null,13,14,15,16,null,null,17,18]
Output: 8
Explanation: 8 is the length of the path [15,11,7,5,4,6,10,13,17], [15,11,7,5,4,6,10,13,18], [16,11,7,5,4,6,10,13,17] or [16,11,7,5,4,6,10,13,18].
Try here before watching the video.
Video Solution
Java Code
class Solution {
int diameter = 0;
private int height(TreeNode root) {
if(root == null) {
return 0;
}
int leftHeight = height(root.left);
int rightHeight = height(root.right);
int currDiameter = 1 + leftHeight + rightHeight;
diameter = Math.max(currDiameter, diameter);
return 1 + Math.max(leftHeight, rightHeight);
}
public int diameterOfBinaryTree(TreeNode root) {
height(root);
return diameter - 1;
}
}
C++ Code
class Solution {
public:
int diameter = 0;
int height(TreeNode* root) {
if(root == NULL) {
return 0;
}
int leftHeight = height(root->left);
int rightHeight = height(root->right);
int currDiameter = 1 + leftHeight + rightHeight;
diameter = max(currDiameter, diameter);
return 1 + max(leftHeight, rightHeight);
}
int diameterOfBinaryTree(TreeNode* root) {
height(root);
return diameter - 1;
}
};
Python Code
class Solution:
# diameter variable is bound to every new test case.
# hence, associate it with self so that it is different for every new test case.
# to understand this, oops principles must be known to you.
def __init__(self):
self.diameter = 0
def height(self, root):
if root is None:
return 0
leftHeight = self.height(root.left)
rightHeight = self.height(root.right)
currDiameter = 1 + leftHeight + rightHeight
self.diameter = max(currDiameter, self.diameter)
return 1 + max(leftHeight, rightHeight)
def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
self.height(root)
return self.diameter - 1
Javascript Code
var diameterOfBinaryTree = function(root) {
let diameter = 0;
const height = function(node) {
if (node === null) {
return 0;
}
let leftHeight = height(node.left);
let rightHeight = height(node.right);
let currDiameter = 1 + leftHeight + rightHeight;
diameter = Math.max(currDiameter, diameter);
return 1 + Math.max(leftHeight, rightHeight);
};
height(root);
return diameter - 1;
};
Go Code
type Solution struct {
diameter int
}
func (sol *Solution) height(root *TreeNode) int {
if root == nil {
return 0
}
leftHeight := sol.height(root.Left)
rightHeight := sol.height(root.Right)
currDiameter := 1 + leftHeight + rightHeight
sol.diameter = int(math.Max(float64(currDiameter), float64(sol.diameter)))
return 1 + int(math.Max(float64(leftHeight), float64(rightHeight)))
}
func diameterOfBinaryTree(root *TreeNode) int {
sol := Solution{diameter: 0}
sol.height(root)
return sol.diameter - 1
}
Complexity Analysis
Time Complexity: O(N), we are iterating over N number of nodes in the tree.
Space Complexity: O(N), in the worst-case scenario, the tree can be skewed. Therefore, the total number of active recursive calls in the stack can be N.